ИДЗ Рябушко 2.1 Вариант 2
По любым вопросам вы можете связаться с администраторомНаписать админу
Описание
№1. Даны вектора a = α·m + β·n; b = γ·m + δ·n; |m| = k; |n| = ℓ; (m;n) = φ;
Найти: a) ( λ·a + μ·b )·( ν·a + τ·b ); б) проекцию ( ν·a + τ·b ) на b; в) cos( a + τ·b ).
Дано: α = -2; β = 3; γ = 4; δ = -1; k = 1; ℓ = 3; φ = π; λ = 3; μ = 2; ν = -2; τ = 4.
№2. По координатам точек А; В и С для указанных векторов найти: а ) модуль вектора a;
б ) скалярное произведение векторов a и b; в ) проекцию вектора c на вектор d; г ) координаты
очки M; делящей отрезок ℓ в отношении α:.
Дано: А( 4 ; 3 ; – 2 ); В – 3 ; –1; 4 ); C( 2 ; 2 ; 1 ); …
№3. Доказать, что вектора a;b;c образуют базис и найти координаты вектора d в этом базисе.
Дано: a(2;–1;4); b(–3;0;–2 ); c(4;5;–3 ); d(0;11;–14).
Найти: a) ( λ·a + μ·b )·( ν·a + τ·b ); б) проекцию ( ν·a + τ·b ) на b; в) cos( a + τ·b ).
Дано: α = -2; β = 3; γ = 4; δ = -1; k = 1; ℓ = 3; φ = π; λ = 3; μ = 2; ν = -2; τ = 4.
№2. По координатам точек А; В и С для указанных векторов найти: а ) модуль вектора a;
б ) скалярное произведение векторов a и b; в ) проекцию вектора c на вектор d; г ) координаты
очки M; делящей отрезок ℓ в отношении α:.
Дано: А( 4 ; 3 ; – 2 ); В – 3 ; –1; 4 ); C( 2 ; 2 ; 1 ); …
№3. Доказать, что вектора a;b;c образуют базис и найти координаты вектора d в этом базисе.
Дано: a(2;–1;4); b(–3;0;–2 ); c(4;5;–3 ); d(0;11;–14).
Q&A
Скидки
Сумма покупок | Размер скидки |
---|---|
от 20 USD | 10% |
от 10 USD | 5% |
от 5 USD | 3% |